Magnetic levitation trains: the operation of Maglev tracks

The secret of magnetic levitation of Maglev trains is kept inside the tracks.
The magnetized coil that runs along the track, called the guide, repels the large magnets on the train bogie, allowing the train to levitate 1 to 10 centimeters above the guide. Once the train is levitating, energy is supplied to the coils inside the rail walls to create a unique system of magnetic fields that attract and push the train along the rail. The electrical current supplied to the coils in the rail walls is constantly alternating to change the polarity of the magnetized coils.
Magnetically levitated trains float on an air cushion, eliminating friction. This lack of friction and the aerodynamic designs of the trains allow these trains to reach unprecedented ground speeds of more than 500 km/h, but some magnetic levitation trains are able to reach even higher speeds like the record set by Japan Railway in 2016 with a speed of 601 km/h.
Although all Maglev projects are based on similar concepts, very different prototypes have been developed over time, in Germany engineers have developed an electromagnetic suspension system (EMS) called Transrapid. In this system, the lower part of the train wraps itself around a steel rail. The electromagnets fixed to the bogie of the train are directed upwards and then towards the rail, which makes the train levitate about 1 centimeter above the rail and keeps the train levitated even when it is not moving. Other driving magnets built into the body of the train keep it stable during the journey. Germany has shown that Transrapid prototypes can reach 300 mph with people on board.


Japanese engineers, on the other hand, have developed an electrodynamic suspension system (EDS), which is based on the repulsion force of magnets. The fundamental difference between Japanese and German magnetic levitation train technology is that Japanese trains use super-cooled and superconducting electromagnets. This type of electromagnet can conduct electricity even after the power supply has been cut off. In the EMS system, which uses standard electromagnets, the coils conduct electricity only when there is a power supply. By cooling the coils at very low temperatures, the Japanese system saves energy. However, the cryogenic system used to cool the coils can be expensive and have a significant impact on construction and maintenance costs.
Gesa Industry follows with extreme attention all innovative projects for public transport and has always accompanied the decisive progress in the sector, positioning itself as a reliable partner for the development and construction of new models of train interiors.

Post Correlati

June 10, 2022
European Year of Railways

After a challenging 2020, 2021 has been declared the European Year of Railways by the European Parliament and the Council. The year will feature a number of initiatives such as dedicated events, exhibitions and campaigns to promote rail as the most sustainable and innovative mode of transport, as well as supporting the achievement of the […]

Read More
July 25, 2021
Composite materials for cheaper and more efficient trains

London Underground's District Line trains launched the first production trains fitted with lightweight aluminium composite honeycomb doors in 1978. Several decades after this first step, what are the advantages of using composite materials today?   Need for weight reduction in rail vehicles Increasing passenger demands, including universal access toilets, CET tanks, power outlets, air conditioning, […]

Read More
May 3, 2021
Origin and evolution of hyperloop railway technology

Richard Branson's Virgin Hyperloop made headlines around the world in November 2020 after the first tests with passengers were conducted. But what are the foundations of this innovative means of transport? Let's trace the most important moments in its evolution. 18th and 19th centuries: precursor projects of the hyperloop Musk's idea of building a superfast […]

Read More
April 1, 2021
Hydrogen railway: is it time to convert?

Natural gas could become a key element in the journey towards a hydrogen economy. A particularly good example of the technological advances being made in hydrogen production came from the Karlsruhe Institute of Technology in Germany. Researchers at the institute are developing a new method to separate hydrogen from natural gas using a liquid metal […]

Read More
crossmenuchevron-downchevron-right linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram